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We present a method for evaluating second-order Moller-Plesset (MP2) energy and gradients for solvated
molecules described within the polarizable continuum model (PCM). The explicit inclusion of solvent effects
into the evaluation of the relaxed MP2 density through theZ-vector technique is reported and analyzed.
Applications to some one-electron response properties (dipoles, electrostatic molecular potentials, electric
field gradients) as well as nuclear gradients are presented.

1. Introduction

In the past years, many important developments have made
continuum solvation models the most versatile methods to
include solvent effects into semiempirical and ab initio quantum
chemistry.1 In particular, large effort has been devoted to extend
such models to quantum mechanical (QM) techniques of
increasing accuracy. In this way, models originally limited to
work at the Hartree-Fock (HF) level, can be now used in many
post-SCF calculations. This computational extension has been
accompanied by a reformulation of the various QM theories so
as to include the specificities of the solvation model. Such
requirement is particular pressing for those models in which an
effective Hamiltonian (EH) is introduced. In this case, the
solvent effects are added to the HamiltonianĤ0 of the isolated
molecule through a reaction potential operator depending on
the solute wave function,V̂R(Ψ); the resulting Schro¨dinger
equation becomes nonlinear; namely, one obtains

In addition to a nonlinear character, the inclusion of the solvent
also leads to define a new energy functional, the free energyG,
to which the variation principle has to be applied. The difference
between the eigenvalueE and the functionalG is related to the
work spent by the solute subsystem to distort the charge
distribution of the solvent (polarization work), and thus the free
energy expression is

The factor1/2 in eq 2 reflects the linearity in the polarization of
the environment.

The recent evolution of EH methods is leading to very
efficient computational codes, which reduce the complexity of
the QM calculations in solution to that of the corresponding
calculations in vacuo. There is of course the need of having
efficient coupling between the two components, solvation and

molecular QM description, and of using definitions of the
interaction potential faithful and suitable for application at the
various levels of the QM theory. In our opinion, the polarizable
continuum model (PCM) we have developed in the past years2,3

satisfies both requirements. With respect to other similar
methods, the PCM has the great advantage of describing the
solute potential field polarizing the solvent in an exact form,
i.e., without the help of approximated and/or truncated expres-
sions as those given in terms of multipole series. In addition,
no restrictions have to be imposed on the form of the cavity
enveloping the solute when immersed in the continuum dielectric
medium. This can be in fact well modeled on the real geometry
of the molecular system.

The PCM model has been largely modified over the past few
years; in particular, two fundamental aspects have been com-
pletely revised: the technique exploited to solve the nonlinear
QM problem3 and the formulation of the basic system giving
the expression of the electrostatic portion of the reaction
potential V̂R(Ψ). The latter revision has led to define a new
and more general solvation model known as integral equation
formalism (IEF-PCM).4 In addition, many important extensions
allowing the calculation of analytical derivatives of the free
energy with respect to various parameters5 (nuclear coordi-
nates,6,7 electric and magnetic fields,8-10 etc.) and of the related
molecular properties (vibrational frequencies, (hyper)polariz-
abilities, nuclear shieldings, etc.) have been realized. Here we
present a different kind of extension related to the previously
quoted efforts toward more accurate QM descriptions which
take into account the effects of electron correlation in the
solvation process. We recall that the solvent effects will be
limited to the electrostatic contribution only; other interactions,
of repulsive, dispersive, and steric nature, are completely
neglected here; the latter are usually introduced into solvation
models through techniques independent on the QM description
of the system, for example by exploiting semiempirical expres-
sions, and thus they have not to be taken into account in the
QM reformulation of the model. Actually, examples of QM
description of repulsion and dispersion effects have been recently
formulated11 in our group and introduced in the PCM effective* Corresponding author. E-mail: tomasi@dcci.unipi.it.

[Ĥ0 + V̂R(Ψ)]Ψ ) EΨ (1)

G ) 〈Ψ|Ĥ0 + 1/2V̂R(Ψ)|Ψ〉 (2)
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Hamiltonian; here, however, we do not present any correlated
correction to these contributions.

Electron correlation is more commonly introduced into
solvent EH techniques using MCSCF and DFT methods. Both
are implemented in recent and less recent versions of PCM,12

and there are also numerous examples for other solvent EH
procedures.13,14 However, the perspective of treating solute
electron correlation via perturbation theory approaches is
tempting especially to enlarge the set of options to users asking
for methods requiring reasonable computational costs.

Perturbation theory within solvation schemes has been
originally considered by Tapia and Goscinski15 at the CNDO
level. An ab initio version of the Møller-Plesset perturbation
theory was introduced years ago by Olivares et al.16 following
some intuitive considerations based on the fact that the electron
correlation which modifies both the HF solute charge distribu-
tion and the solvent reaction potential depending on it can be
back-modified by the solvent. To decouple these combined
effects the authors introduced three alternative schemes: (1)
the noniterative “energy-only” scheme (PTE), where the solvated
HF orbitals are used to calculate MPn correlation correction;
(2) the density-only scheme (PTD) where the vacuum MPn
density matrix is used to evaluate reaction field; and (3) the
iterative (PTED) scheme, where the correlated electronic density
is used to make the reaction field self-consistent. As concerns
the last scheme, some further comments are required.

The PTED scheme leading to a comprehensive description
of the effects separately considered by PTD and PTE is rather
cumbersome and not suited for the calculation of analytical
derivatives, even at the lowest order of the MP perturbation
theory. In addition, in an elegant theoretical paper Angyan17

stressed that a rigorous application of the perturbation theory,
in which thenth-order correction to the energy is based on the
(n - 1)th-order density, the correct MP2 solute-solvent energy
has to be calculated with the solvent reaction field due to the
Hartree-Fock electron density.

In the following section we present a computational method,
called PCM-MP2, in which no iterative procedures involving
the electronic density corrected to second order, as those
exploited in the PTED scheme, are introduced. As a conse-
quence, the PCM-MP2 method has a structure which makes
the analytical calculation of energy derivatives relatively easy.
The central focus of the theory is then shifted to the evaluation
of the relaxed MP2 density which is obtained within theZ-vector
technique of Handy and Schaefer.18 Such method is reformulated
in section 3 so as to take into account solvent effects in the
resulting coupled perturbed Hartree-Fock expression. As
concerns MP2 gradients, further refinements arising from the
derivatives of the primitive basis functions and from the
derivative of the SCF orthogonality condition have been added
still including the solvent contributions. Numerical applications
to one-electron properties and to gradients are given in section
4. We remark that the examples we present are closed-shell
molecules; but, in principle, the theory we have formulated can
be extended to open-shell energies and gradients.

2. Basic Formulation of PCM-MP2 Free Energy

At the MP2 level, the free energy of the solvated system can
be expressed as

whereG HF is the Hartree-Fock (HF) contribution andG (2) is
the MP2 correction.

In a N-electron system described in terms of a single
determinant with spin-orbitals expanded on a set of atomic
orbitals (AO){øµ, øν, ...}, the HF free energyG HF is written as

wherehµν are the matrix elements, in the AO basis, of the one-
electron core operator and〈µλ||νσ〉 are the antisymmetrized
combination of regular two-electron repulsion integrals (ERIs).

The presence of solvent operators in the effective Hamiltonian
is reflected here in thejµν andBµν,λσ integrals which describe
the solute-solvent interactions within the PCM model; in
particular, the former contain the term due to the nuclei-induced
component of the solvent reaction field while the latter represent
the electron-induced counterpart. In the PCM framework the
solvent field is described in terms of “apparent” charges (in the
following indicated asq) placed at the center of small regions
(called tesserae) covering the surface of the cavity containing
the molecular solute. In this framework bothjµν andBµν,λσ are
expressed in terms of products of these apparent or “induced”
charges with the electrostatic potential due to the solute charge
distribution. The detailed expressions defining the apparent
charges as well as their interaction matrices can be found in ref
3 for the basic version of the model and in ref 4 for the last
reformulation known as IEF-PCM. In the last term of eq 4,ṼNN

we include both solute nuclear repulsion and solute-solvent
nuclear interaction.

The elementsPµν
HF of the HF density matrix are defined as

wherecµi are the expansion coefficients of molecular spin-
orbitals. They are obtained by solving the corresponding HF
equations:

where the elementsF̃µν of the Fock matrix, namely

contain the solvent effects in the already introduced matrixj
and in the solvent-equivalent of the in vacuo two-electron matrix
G; that is, we have

In eq 6Sµν are the elements of the overlap matrix in the AO
basis andεp the energy of thepth spin-orbital. In the following
the spin-orbitals obtained from eq 6 will be indicated asi, j,
... if occupied,a, b, ... if virtual, andp, q, ... when referring to
general molecular orbitals.

The MP2 correlated contribution to the free energy thus
becomes16,17G MP2 ) G HF + G (2) (3)

G HF ) ∑
µν

Pµν
HF(hµν + jµν) + 1/2 ∑

µνλσ

Pµν
HFPλσ

HF[〈µλ||νσ〉 +

Bµν,λσ] + ṼNN (4)

Pµν
HF ) ∑

i

N

cµicνi (5)

∑
ν

(F̃µν - εpSµν)cνp ) 0 (6)

F̃µν ) (hµν + jµν) + Gµν(P
HF) + Xµν(P

HF) (7)

Gµν ) ∑
λσ

Pλσ
HF〈µλ||νσ〉 (8)

Xµν ) ∑
λσ

Pλσ
HFBµν,λσ (9)

G (2) ) 1/4 ∑
ijab

tij
ab〈ij ||ab〉 (10)
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where the double excitation amplitudes are given by

From eqs 3-11 it follows that solvent effects do not change
the basic formalism leading to the final MP2 expression but
they act at each step introducing new operators (and the related
matrices) which modify all the involved quantities (MO
coefficients, orbital energies, etc.) with respect to the parallel
calculation for the isolated system.

3. Relaxed Density and Analytical PCM-MP2 Derivatives

Let us now consider the problem of determining the analytical
first derivative of the PCM-MP2 free energy (3), namely

We recall that the basis for much of the following work is
represented by the key conceptual developments in analytical
derivative theory for conventional, unsolvated calculations given
in the articles we have collected in ref 19 and in those we shall
explicitly quote below.

The basic theory of analytical PCM-HF free energy deriva-
tives,G HF,x, has been formulated in previous papers;5,6 here it
is worth exploiting the following expression

where we have used a contracted notation indicating the first
derivative of any functionA asAx ) ∂A/∂x and withWµν

HF the
elements of the matrixWHF ) PHFF̃PHF. In the expression above,
it does not compare any derivative of the density matrixPHF.

By direct differentiation of the correction termG (2) we arrive
at the following expression, in which we have exploited the
symmetry properties implicitly contained in eq 10:

In eq 14, first derivatives of both spin-orbitals and related
orbital energies appear. These can be obtained by exploiting
the coupled perturbed Hartree-Fock (CPHF) theory for solvated
systems we have recently developed.7-9

The derivatives of the molecular orbitals (MO) can be
expressed as20

whereUpq
x are the CPHF coefficients and|µx〉 the derivatives

of the AO basis functions.

The elements of the unknown matrixUx can be obtained from
the following equations:

where

with

while the orbital energy derivatives are given by

Introducing eqs 15-24 into eq 14, we obtain, through simple
algebra, the first derivative of the PCM-MP2 free energy
correction as

wherePij
(2) andPab

(2) are the elements of the occupied-occupied
(o-o), and virtual-virtual (v-v) blocks of the relaxed MP2
density matrix, respectively:

tij
ab ) 〈ij ||ab〉/(εi + εj - εa - εb) (11)

G MP2,x ) G HF,x + G (2),x (12)

G HF,x ) ∑
µν

Pµν
HF(hµν

x + jµν
x ) + 1/2 ∑

µνλσ

Pµν
HFPλσ

HF[〈µλ||νσ〉x +

Bµν,λσ
x ] - ∑

µν

Sµν
x Wµν

HF + ṼNN
x (13)

G (2),x ) 1/2[∑
ijab

tij
ab〈ixj||ab〉 + ∑

ijab

tij
ab〈ij x||ab〉 +

∑
ijab

tij
ab〈ij ||axb〉 + ∑

ijab

tij
ab〈ij ||abx〉] - 1/4 ∑

ijab

tij
abtij

ab(εi
x + εj

x -

εa
x - εb

x) (14)

|ax〉 ) ∑
f*a

vac

Ufa
x |f〉 + ∑

k

occ

Uka
x |k〉 + ∑

µ

cµa|µx〉 (15)

|ix〉 ) ∑
f

vac

Ufi
x|f〉 + ∑

k*i

occ

Uki
x |k〉 + ∑

µ

cµi|µx〉 (16)

Uai
x ) ∑

bj

(Ã-1)ai,bj

Q̃bj
x

εj - εb

(17)

Ufa
x ) -

1

εf - εa

[Q̃fa
x + ∑

gm

Ugm
x (〈fm||ag〉 + 〈fg||am〉 +

2Bgm,fa)] (18)

Uki
x ) -

1

εk - εi

[Q̃ki
x + ∑

gm

Ugm
x (〈km||ig〉 + 〈kg||im〉 +

2Bgm,ki)] (19)

Upq
x + (Uqp

x )* + Spq
x ) 0 (20)

Ãai,bj ) δab,ij +
〈ab||ij 〉 + 〈aj||ib〉 + 2Bai,bj

εa - εi
(21)

Q̃pq
x ) [hpq

x + jpq
x ] - Spq

x
εq - ∑

kl

Skl
x [〈pl||qk〉 + Bpq,kl] +

∑
µνλσ

(cµp)*cνqPλσ[〈µλ||νσ〉x + Bµν,λσ
x ] (22)

hpq
x + jpq

x ) ∑
µν

[(cµp)*cνq(hµν
x + jµν

x )] (23)

Spq
x ) ∑

µν

(cµp)*cνqSµν
x (24)

εp
x ) Q̃pp

x + ∑
gm

Ugm
x (〈pm||pg〉 + 〈pg||pm〉 +2Bgm,pp) (25)

G(2),x ) ∑
ij

Pij
(2)Q̃ij

x + ∑
ab

Pab
(2)Q̃ab

x + 2∑
ai

L̃Uaiai
x + ∑

ij

I ijSij
x +

∑
ab

IabSab
x + 2∑

ai

IaiSai
x + ∑

µνFσ

〈µν|Fσ〉xΓ(µνFσ) (26)

Pij
(2) ) -1/2∑

kab

tik
abtjk

ab (27)

Pab
(2) ) 1/2∑

ijc

tij
actij

bc (28)
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The Lagrangian elementsL̃ai when computed within the PCM-
MP2 framework become

while Iij, Iab, andIai are defined exactly as in vacuo, with

The last term of eq 26 collects the AO derivative part where
we defineΓ(µνFσ) as

The presence ofUai
x in the third term of eq 26 should require

the solution of as many PCM-CPHF equations as the pertur-
bative parameters. However, by exploiting theZ-vector method18

it is possible to reduce the problem to a single PCM-CPHF
equation which is independent on the perturbation. In fact, the
third term of eq 26 can be expressed in the equivalent form

where the virtual-occupied (v-o) block of the relaxed density
matrix is the solution of the following perturbation-independent
linear PCM-CPHF equation:

At the best of our knowledge eq 35 represents the first complete
generalization to solvation methods (here applied to PCM
approach) of theZ-vector equation. Olivares et al.16 have
proposed a version of eq 29 in which no solvation terms are
included either inÃbj,ai or in L̃ai, while in the alternative
formulation of Willets and Rice21 the simpler model they use
for the solvent reaction field seems to affectÃ but not the
LagrangianL̃.

Introducing eq 34 into eq 26, we obtain the following
expression forG (2),x

Adding eq 36 to the HF counterpart (13), the final expression
for the first derivative of the PCM-MP2 free energy becomes

whereXµν
x (PHF) ) ∑λσPλσ

HFBµν,λσ
x .

The effective second-order densityPMP2 and the energy-
weighted densityWMP2 are

where the second-order correction to the density and the energy-
weighted density matrices are obtained by back-transforming
the MO equivalents in the AO basis:

with

The two-particle density matrix elementsΓµνFσ
MP2 introduced in

eq 37 may be separated into two terms that are regarded as
separable and nonseparable, namely

The separable part (46) is similar in form to the expression of
HF two-particle density matrix, while the nonseparable part (47)
is a back-transformation oftij

ab from MO to AO basis.

4. One-Electron Properties and Nuclear Gradients

The Hellman-Feynman theorem assures that for solvated
systems described within continuum model17,22,23 the one-
electron properties related to exact eigenfunctions can be
determined both as expectation values of the related one-electron
operatorM ) ∑im(i) and as first derivatives of the free energy,
G λ, with respect to the parameterλ defining the intensity of
the perturbation, namelyλM and

whereH′ is the linear component of the molecular Hamiltonian.
The equivalence between the two alternative methods applies

also for HF or MCSCF approximated wave functions which
exploit orbital expansions on basis functions not depending on
λ.20 When the wave function is approximated with many-body
methods as the coupled-cluster (CC) or the MPn theories,
Helmann-Feynman theorem is not fulfilled and the two
methods to calculate first-order properties are no longer
equivalent. In the latter cases, also for solvated systems, exactly

L̃ai ) ∑
jk

Pkj
(2)(〈ki||ja〉 + Bkj,ai) + ∑

bc

Pbc
(2)(〈bi||ca〉 + Bbc,ai) +

Iai + 1/2∑
jbc

tij
bc〈cb||aj〉 (29)

Iij ) -1/2∑
kab

tik
ab〈jk||ab〉 (30)

Iab ) -1/2∑
ijc

tij
ac〈bc||ij 〉 (31)

Iai ) -1/2∑
jkb

tkj
ab〈ib||kj〉 (32)

Γ(µνFσ) ) 2 ∑
i>j,a>b

tij
ab(cFacσb - cFbcσa)cµicνj (33)

2∑
ai

L̃aiUai
x ) 2∑

ai

L̃ai∑
bj

(Ã-1)ai,bj

Q̃bj
x

εj - εb

) 2∑
bj

Pbj
(2)Q̃bj

x (34)

∑
bj

Pbj
(2)(εj - εb)Ãbj,ai ) L̃ai (35)

G (2),x ) ∑
ij

Pij
(2)Q̃ij

x + ∑
ab

Pab
(2)Q̃ab

x + 2∑
ai

Pai
(2)Q̃ai

x + ∑
ij

I ijSij
x +

∑
ab

IabSab
x + 2∑

ai

IaiSai
x + ∑

µνFσ

〈µν|Fσ〉xΓ(µνFσ) (36)

G MP2,x ) ∑
µνFσ

ΓµνFσ
MP2〈µν||Fσ〉x + ∑

µν

Pµν
MP2hµν

x - ∑
µν

Sµν
x Wµν

MP2 +

VNN
x + ∑

µν

Pµν
(2)[jµν

x + Xµν
x (PHF)] + ∑

µν

Pµν
HF[jµν

x + 1/2Xµν
x (PHF)]

(37)

Pµν
MP2 ) Pµν

HF + Pµν
(2) (38)

Wµν
MP2 ) Wµν

HF + Wµν
(2) (39)

Pµν
(2) ) ∑

pq

(cµp)*cνqPpq
(2) (40)

Wµν
(2) ) ∑

pq

(cµp)*cνqWpq
(2) (41)

Wij
(2) ) 1/2∑

kab

tjk
ab〈ki||ab〉 - εiPij

(2) - ∑
pq

Ppq
(2)[〈ip||jq〉 + Bij ,pq]

(42)

Wab
(2) ) 1/2∑

ijc

tij
bc〈ij ||ca〉 - εaPab

(2) (43)

Wai
(2) ) 1/2∑

jkb

tjk
ba〈jk||ib〉 - εiPai

(2) (44)

ΓµνλF
MP2 ) ΓµνλF

S + ΓµνλF
NS (45)

ΓµνλF
S ) 1/2(Pµν

HF + 2Pµν
(2))PλF

HF - 1/2(PµF
HF + 2PµF

(2))Pλν
HF (46)

ΓµνλF
NS ) 2 ∑

i>j,a>b

tij
abcµicλjcνacFb (47)

〈Ψ|M |Ψ〉 ) ∂G
∂λ

) 〈Ψ|∂H′
∂λ |Ψ〉 (48)
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as for isolated molecules,24 the derivative method gives a more
direct way toward higher-order response properties.

4.1. One-Electron Properties.If we consider as derivative
parameter the factor defining the intensity of the perturbation
λM and we assume that the basis functions are independent of
the perturbation, the MP2 energy derivative (37) has to be
limited to the MO derivative part. Indeed, the equation reduces
to the first three terms only since the elements ofSx are zero;
the resulting expression for the one-electron property connected
to M thus becomes

wherePµν
MP2 are the second-order density matrix elements (see

eq 38) andmµν ) 〈µ|m|ν〉.
From the analysis above it should be clear that the relaxed

MP2 density is itself a one-electron property defined as the free
energy derivative when the perturbation is the delta-function.

4.2. Nuclear Gradients.PCM-MP2 nuclear gradients can
be directly obtained from eq 37 considering the 3N Cartesian
coordinates of solute nuclei as derivative parameters. The
derivatives of solvent-induced matrices,jµν

x and Xµν
x , can be

calculated by exploiting the formalism we have recently
formulated leading to the following expressions:6

and

Here VN,x(i) and Vµν
x (i) are the derivatives of the electrostatic

potentials (computed on theith tessera) due to the nuclear charge
distributionγN and to the elementary charge distributionøµ

/øν.
In eqs 51-56 explicit reference is made to the apparent charges
introduced in the PCM approach to describe solvent reaction
field; in particular,qN(i), qµν(i), andqe(i) represent the apparent
charges induced on the surface cavity (one for each tesserai of
areaai) by γN, øµ

/øν, and the total electronic charge distribution
of the solute, respectively.

The term appearing between parentheses in eqs 53 and 56
takes into account the movement of the cavity with respect to
the motion of the nucleus; it only depends on the cavity

geometry and it assumes a very simple expression when such
cavity is built in terms of interlocking spheres centered on the
nuclei.6

5. Numerical Applications

Malonaldehyde is an extensively studied molecular system,
from both the experimental25 and the computational26,27 point
of view. This large interest is mainly due to the intramolecular
hydrogen bond acting in the cyclic conformation of thecis-
enol form (system1 in Figure 1) which also shows an interesting
six-membered ring arrangement. The geometry of1 has been
well studied experimentally and thus it offers an useful example
to compare with in order to test ab initio calculations.

Here we present a study of this and the related conformer
(trans-enol 2) of malonaldehyde at both HF and MP2 level.
The calculations of one-electron properties and optimized
geometries were done using a 6-31++G** basis set both in
vacuo and in solution. In the latter case we have used the HF
and MP2 implementations of PCM introduced in the Gaussian99
code.28 As additional information about the PCM solvation
model (applying for both HF and MP2 theories), we recall that
the cavity in which the solute is placed is defined in terms of
interlocking spheres centered on the solute nuclei. In the present
case the radiiRk are equal to 1.2 times the corresponding van
der Waals valuesRk

vdw; that is, we haveRH ) 1.44 Å, RC )
2.04 Å, andRO ) 1.80 Å. The solvation calculations are
performed for a medium having dielectric constantε ) 78.5
corresponding to the static dielectric constant of liquid water at
298 K.

Previous calculations on the same systems have shown the
limits of the HF method to describe both the geometrical
structure and the molecular properties of the two isomers.27 This
finding assumes an even more interesting aspect in the present
context where the attention is mainly focused on the solvent
effects. Indeed, the solvent can largely modify both the geometry
and the response properties of the solute, combining its action
with that due to correlation. In this way, the solvation introduces
a larger complexity with respect to calculations on isolated
systems in the analysis of the changes induced by the correlated
MP2 calculations on the energies, the one-electron properties,
and more in general the charge density distribution of the solute.

In Table 1 we report the HF and MP2 energies (with
indication of the MP2 corrections) of the two systems both in

MMP2 ) ∑
µν

Pµν
MP2mµν (49)

jµν
x ) Dµν

Ne + Dµν
eN + τµν

Ne + τµν
eN (50)

Dµν
Ne ) - ∑

i

VN,x(i)qµν(i) (51)

Dµν
eN ) - ∑

i

Vµν
x (i)qN(i) (52)

τµν
eN + τµν

Ne ) -
4πε

ε - 1
∑

i

qµν(i)q
N(i)(UΓ

x(i)

ai
) (53)

1/2Xµν
x ) Dµν

ee + τµν
ee (54)

Dµν
ee ) -∑

i

Vµν
x (i)qe(i) (55)

τµν
ee + τµν

Ne ) -
2πε

ε - 1
∑

i

qµν(i)q
e(i)(UΓ

x(i)

ai
) (56)

Figure 1. Cis and trans conformations of the enol form of malonal-
dehyde.

TABLE 1: MP2 and HF Energies (au) for the Two Isomers
in Vacuo and in Solution, and Solvation Free Energies∆Gsol
(kcal/mol) for the Solvated Systems

cis trans

vacuo water vacuo water

MP2
energy -266.41728 -266.42493 -266.39670 -266.41446
MP2 corr -0.76972 -0.76662 -0.76721 -0.76256
∆Gsol -4.8 -11.1

HF
energy -265.65295 -265.66314 -265.63421 -265.65567
∆Gsol -6.4 -13.5
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vacuo and in water. In the latter case also the solvation free
energies (∆Gsol ) Gvac - Gaq) are presented.

Two are the main aspects to be observed. First, we note that
the stabilizing effect of the intramolecular H-bond acting in the
cis isomer is amplified by correlation; the isomerization energy
from the cis to the trans form of the isolated system goes from
-11.8 kcal/mol at HF level to-12.9 kcal/mol at MP2 level.
This effect, already known from previous calculations,27 is due
to both the decrease of charge density within the bonding regions
between nuclei and on the nuclei themselves, and the parallel
increase in the diffuse regions around atoms. In particular, the
concentration of charge found at the MP2 level in the intermedi-
ate region between the two oxygens is more pronounced for1
as the hydroxyl hydrogen resides within such region.

The second and new aspect introduced by data of Table 1 is
the solvent effect. The main result is the change in the relative
stability of the two isomers: even if solvent does not invert the
picture found in vacuo, the isomerization energy is reduced to
-4.7 kcal/mol at HF level and-6.6 kcal/mol at MP2 level.
Such preferential stabilization of the solvent for the trans form
(see also the values of solvation energies∆Gsol) is contrasted
by the opposite action due to correlation, which more efficiently
stabilizes the cis form. The resulting effect is the smaller solvent-
induced stabilization of the trans form going from HF to MP2
calculations (∆Gsol(trans) - ∆Gsol(cis) is -7.1 and-6.3 kcal/
mol, respectively).

Passing now to one-electron properties, in Table 2 we report
HF and MP2 dipoles and Mulliken net charges for the two
isomers both in vacuo and in water.

The limits of the HF theory in predicting reliable dipole
moments are largely known, it suffices to recall the CO example
in which not only the magnitude but also the direction of the
dipole cannot be reproduced in the HF limit. For the two isomers
of malonaldehyde the situation is not so unlucky but some
effects are still evident passing from HF to MP2 calculations.
In particular, all the dipole values are significantly reduced by
correlation (of 5.1% for the cis form and of 7.6% for the trans
of the molecule in vacuo). In the presence of the solvent the
analysis is more articulate as solvation induces an opposite effect
leading to increase dipole values; the decrease of the MP2 dipole
values is thus reduced to 2.7% and 6.5 %, in the cis and in the
trans isomer, respectively. Also, the net atomic charges show a
similar trend; the inclusion of correlation leads to a global
reduction of their absolute values both for the isolated and the
solvated system, but in the latter case such reduction is smaller
because of the opposite action due to solvation.

A different, but still related, analysis can be done on two
electrostatic properties: the molecular electrostatic potential
(MEP) and the electric field gradient (EFG).

The MEP is a very common and effective tool to visualize
the effects of charge density and of its modifications due to
different levels of calculation. The 3D shape of the MEP

function is generally rather intricate, and its analysis is often
done with the help of graphical display of maps on selected
planes. We shall limit ourselves to present the map of the
molecular electrostatic energy (obtained by multiplying the MEP
by a unit charge) for the molecular plane of the two isomers
obtained at MP2 level with inclusion of the solvent (see Figures
2 and 3). They are not qualitatively different from those of the
isolated systems on the one hand, and from those obtained with
HF calculations on the other hand.

The main aspect which distinguishes HF and MP2 calcula-
tions, as well as solvated and isolated systems, is the relative
magnitude of the property while the general shape of the map
remains almost unchanged introducing correlation and/or solvent
effects. The numerical data are shown in Table 3 where we

TABLE 2: MP2 and HF Dipoles (D) and Mulliken Net Charges (au) for the Two Isomers Both in Vacuo and in Solutiona

MP2 HF

cis trans cis trans

vacuo water vacuo water vacuo water vacuo water

µ 2.820 3.798 4.640 6.249 2.964 3.901 4.991 6.657
Cc 0.1714 0.1952 0.1804 0.2073 0.3602 0.3857 0.3420 0.3787
Oc -0.4780 -0.5502 -0.3807 -0.5002 -0.5884 -0.6676 -0.4831 -0.6141
C -0.1419 -0.1707 -0.2087 -0.2856 -0.3070 -0.3469 -0.3514 -0.4478
Ch 0.1071 0.1167 0.1694 0.2250 0.2544 0.2644 0.3091 0.3722
Oh -0.4646 -0.5074 -0.4427 -0.5059 -0.5557 -0.5889 -0.5157 -0.5772
Ha 0.4225 0.4347 0.3805 0.4316 0.4540 0.4642 0.3994 0.4495

a The subscript c on C and O indicates the carbonyl group, while h refers to C-OH group. The hydrogen (Ha) refers to the hydroxyl.

Figure 2. MP2 molecular electrostatic potential (kcal/mol) computed
for the cis-enol in water. The plot is for the molecular plane (au are
used for both axes) and the contour lines increase by 6 kcal/mol.

TABLE 3: Minimum Values of the MEP (kcal/mol) at MP2
and HF Levels for the Cis and Trans Isomers Both in Vacuo
and In Solution

MP2 HF

cis trans cis trans

vacuum -43.9 -62.0 -53.9 -70.3
water -54.0 -79.0 -65.6 -89.9
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report the minimum values for the two molecular systems both
in vacuo and in water at MP2 and HF level of calculation. It is
worth noting that the position of the minima are almost
equivalent for both HF and MP2 calculations. Also, solvation

effects are not significant; the minima are only slightly displaced
but they always remain well inside the molecular cavity
containing the solute.

As regards electric field gradients (EFG’s), the interest is
mainly due to their proportionality to the nuclear quadrupole
coupling constants (NQCC’s) used to estimate the relative
widths of nuclei NMR signals.

The principal axis (PA) components (in atomic units)qzz, qyy,
andqxx of the traceless EFG tensor correlate with the experi-
mental quantities, the NQCC,ν, (measured in Hz) and the
asymmetry parameter,η, through the relationships

where eq is the largest EFG component, i.e.,eqzz, as by
definition the PA components are assigned such that|qzz| >
|qyy| > |qxx|. To calculatee2qQ/h from the computedqzz value,
a literature value forQ, the nuclear quadrupole, is required: in
the present work, where we shall limit the analysis to the two
oxygens and the hydroxyl hydrogen, values ofQH ) 2.860×
10-3 barn29 and QO ) -0.0265 barn30 have been assumed,
although other values have been also used. The resultant
conversion factors fromqzz to e2qQ/h values are as follows:
for hydrogen (here considered in its2H isotopic form), 672.0
kHz/au and for oxygen (as17O isotope),-6.227 MHz/au.

In Table 4 we reportν andη values for the two isomers at
MP2 and HF level both in vacuo and in solution.

Data of Table 4 are to be interpreted here as a further index
of the combined correlation-solvent effects more than as a
specific molecular property. More detailed comments should
in fact require analyses of different type, namely based on the
influence of the H-bond and of the relative position of the

TABLE 4: 17O (MHz) and 2H (KHz) ν and η Values at HF and MP2 Levels Both in Vacuo and in Solutiona

MP2 HF

cis trans cis trans

vacuo water vacuo water vacuo water vacuo water

ν(Oc) -9.68 -9.44 -11.26 -10.81 -11.20 -10.81 -12.59 -11.81
η(Oc) 0.17 0.10 0.38 0.26 0.24 0.12 0.45 0.25
ν(Oh) 7.20 7.16 8.72 8.28 9.35 9.23 10.45 9.90
η(Oh) 0.34 0.38 0.66 0.58 0.47 0.49 0.61 0.55
ν(Ha) -212.98 -212.72 -313.89 -297.06 -292.34 -292.66 -359.21 -337.63
η(Ha) 0.18 0.19 0.13 0.20 0.14 0.14 0.13 0.13

a The subscript c on O indicates the carbonyl group, while h refers to the hydroxyl oxygen.

TABLE 5: Selected MP2- and HF-Optimized Geometry Parameters for the Two Isomers Both in Vacuo and in Solutiona

MP2 HF

cis trans cis trans

vacuo water vacuo water vacuo water vacuo water

r(C-C) 1.440 1.438 1.465 1.453 1.453 1.448 1.472 1.458
r(CdC) 1.366 1.365 1.352 1.356 1.345 1.346 1.332 1.340
r(CdO) 1.253 1.257 1.234 1.242 1.208 1.216 1.193 1.207
r(C-O) 1.332 1.338 1.354 1.350 1.312 1.316 1.327 1.323
r(O-Ha) 0.995 0.995 0.966 0.970 0.956 0.956 0.942 0.947
r(C-Hb) 1.083 1.082 1.085 1.084 1.075 1.074 1.078 1.076
r(C-Hc) 1.079 1.074 1.081 1.081 1.073 1.073 1.075 1.074
r(C-Hd) 1.098 1.095 1.104 1.100 1.091 1.088 1.096 1.092
r(O‚‚‚O) 2.600 2.599 2.846 2.871 2.690 2.700 2.890 2.904
∠CdCsC 119.9 120.4 125.9 126.5 121.2 121.8 126.4 126.8
∠CsCdO 123.3 123.1 125.7 124.0 124.0 123.9 126.4 126.7
∠CdCsO 124.3 123.9 123.4 123.6 126.2 125.9 124.9 124.8
∠C-O-Ha 106.0 106.1 109.3 109.0 110.1 110.3 111.7 111.2

a Bond lengths are in Å. The indices defining the nuclei are reported in Figure 1.

Figure 3. MP2 molecular electrostatic potential (kcal/mol) computed
for the trans-enol in water. The plot is for the molecular plane (au are
used for both axes) and the contour lines increase by 6 kcal/mol.

ν ) (eq)(eQ/h) ) e2qQ/h

η ) (qxx - qyy)/qzz
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hydrogen with respect to oxygens, which go beyond the scope
of the paper. What we want to stress is on the one hand the
significant decrease of both cis and trans absolute NQCC and
η of all the nuclei passing from HF to MP2 calculations, and
on the other hand the solvent effects. While the correlation effect
could be expected on the bases of the previous comments on
the changes it induces on the charge distribution, the solvent
effect on NQCC is quite unexpected. Here, in fact, solvation
seems to go in the same direction of correlation inducing a
decrease of bothν andη in all the calculations; once again the
effect on the trans form is more evident than on the cis analog.

Let us now pass to consider the geometrical analysis. As said
at the beginning of the section, previous calculations have shown
that geometry parameters of both cis and trans isomers are
sensitive to correlation;27 in particular the HF approximation
gives geometries in poor agreement with experiments as the
O-O distance is found to be too large. On the contrary, the
same distance computed at the MP2 level compares well with
experimental geometry. The same considerations can be derived
from data of Table 5 where both HF and MP2 geometry
optimization results both in vacuo and in solution are reported.

The available experimental data refer to cis isomer in vacuo
where the O-O distance is 2.553 Å.31 The MP2 result, 2.60 Å,
shows a better behavior of correlated methods in the description
of charge density distributions; here in fact the smaller O-O
distance reflects a shift of charge from the bonding regions
toward the periphery around and between atoms, in particular
the two oxygens, which can then approach each other more
closely. The solvent does not significantly change the results
found for the isolated systems both in the absolute values and
in the MP2-HF modifications; the main differences are found
in the MP2 trans form where in particular the O-O distance
passes from the in vacuo value of 2.846-2.871 Å. This seems
to further confirm the larger solvent effect on the trans form
already found in the analysis of energies and one-electron
response properties.

6. Conclusions

We have presented a methodology to evaluate MP2 energy
and first derivatives for solvated systems described within the
polarizable continuum model (PCM). The analysis has been
mainly focused on the redefinition of the relaxed MP2 density
taking into account solvent effects in the relatedZ-vector
expression. Applications of the method to the evaluation of one-
electron properties and nuclear gradients to be used in geometry
optimizations have been considered and discussed.

The method presents many advantages with respect to
previous formulations; as concerns the energy, it does not add
any further complexity to the standard HF calculations for
solvated systems, while the new formulation of theZ-vector
required to get MP2 density is complete, without the necessity
of introducing approximations or neglection of terms. In
addition, computational costs of this procedure when including
solvent effects are of the same magnitude of a standard PCM-
CPHF calculation while the accuracy in the analytical gradients
is completely comparable with those of the parallel calculations
in vacuo (as shown by the checks on the agreement with finite
displacement values). Finally, this approach presents many
possible developments; the application to higher-order MP2
derivatives (for example to get vibrational frequencies and
electric polarizabilities) has been already considered, and
numerical applications will be presented soon. Other less direct
applications such as the extension of theZ-vector technique to
the evaluation of derivatives within the Tamm-Dancoff and

random phase approximations and, more in general, the
generalization of the whole methodology to coupled cluster
techniques are now in progress.
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