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Second-Order Mgller—Plesset Analytical Derivatives for the Polarizable Continuum Model
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We present a method for evaluating second-order MoRdesset (MP2) energy and gradients for solvated
molecules described within the polarizable continuum model (PCM). The explicit inclusion of solvent effects
into the evaluation of the relaxed MP2 density through Zheector technique is reported and analyzed.
Applications to some one-electron response properties (dipoles, electrostatic molecular potentials, electric
field gradients) as well as nuclear gradients are presented.

1. Introduction molecular QM description, and of using definitions of the

In the past years, many important developments have madeinteraction potential faithful and suitable for application at the
continuum solvatio’n models the most versatile methods to various levels of the QM theory. In our opinion, the polarizable

include solvent effects into semiempirical and ab initio quantum cONtNUUM model (PCM) we have developed in the past f/éars
chemistry In particular, large effort has been devoted to extend Safisfies both requirements. With respect to other similar
such models to quantum mechanical (QM) techniques of methods, the PCM has the great advantage of describing the
increasing accuracy. In this way, models originally limited to .solute. potential field polarlzmg the solvent in an exact form,
work at the Hartree Fock (HF) level, can be now used in many  1-€-» Without the help of approximated and/or truncated expres-
post-SCF calculations. This computational extension has beenSions as those given in terms of multipole series. In addition,

accompanied by a reformulation of the various QM theories so N0 restrictions have to be imposed on the form of the cavity
as to include the specificities of the solvation model. Such €nveloping the solute when immersed in the continuum dielectric

requirement is particular pressing for those models in which an medium. This can be in fact well modeled on the real geometry
effective Hamiltonian (EH) is introduced. In this case, the Of the molecular system.

solvent effects are added to the Hamiltonfahof the isolated The PCM model has been largely modified over the past few
molecule through a reaction potential operator depending onyears; in particular, two fundamental aspects have been com-
the solute wave functionVr(W); the resulting Schidinger pletely revised: the technique exploited to solve the nonlinear
equation becomes nonlinear; namely, one obtains QM problen? and the formulation of the basic system giving
the expression of the electrostatic portion of the reaction
[H + V(W)W = EW (1) potential Vg(¥). The latter revision has led to define a new

and more general solvation model known as integral equation

In addition to a nonlinear character, the inclusion of the solvent formalism (IEF-PCMY. In addition, many important extensions
also leads to define a new energy functional, the free erergy ~ allowing the calculation of analytical derivatives of the free
to which the variation principle has to be applied. The difference energy with respect to various parametefsuclear coordi-
between the eigenvaliand the functionab is related to the ~ nates}’ electric and magnetic fields,° etc.) and of the related
work spent by the solute subsystem to distort the charge molecular properties (vibrational frequencies, (hyper)polariz-
distribution of the solvent (polarization work), and thus the free abilities, nuclear shieldings, etc.) have been realized. Here we

energy expression is present a different kind of extension related to the previously
quoted efforts toward more accurate QM descriptions which
G=MWH+ 1/2(/R(1p)|1pg 2) take into account the effects of electron correlation in the

solvation process. We recall that the solvent effects will be

The factor'/, in eq 2 reflects the linearity in the polarization of limited to .the eIe.ctrost'atic contributiqn only; other interactions,
the environment. of repulsive, dispersive, and steric nature, are completely
The recent evolution of EH methods is leading to very neglected here; the latter are usually introduced into solvation

efficient computational codes, which reduce the complexity of models through techniques independent on the QM description
the QM calculations in solution to that of the corresponding Of the system, for example by exploiting semiempirical expres-
calculations in vacuo. There is of course the need of having Sions, and thus they have not to be taken into account in the

efficient coupling between the two components, solvation and QM reformulation of the model. Actually, examples of QM
description of repulsion and dispersion effects have been recently
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Hamiltonian; here, however, we do not present any correlated In a N-electron system described in terms of a single
correction to these contributions. determinant with spirrorbitals expanded on a set of atomic
Electron correlation is more commonly introduced into orbitals (AO){y., x» .-}, the HF free energ@ "F is written as

solvent EH techniques using MCSCF and DFT methods. Both

are implemented in recent and less recent versions of BCM, G "F = ZPHF( i) T s Z P PL (A vo

and there are also numerous examples for other solvent EH w o

procedured314 However, the perspective of treating solute
electron correlation via perturbation theory approaches is
tempting especially to enlarge the set of options to users askingwhereh,, are the matrix elements, in the AO basis, of the one-

B,uv,}.a] + \~/NN (4)

for methods requiring reasonable computational costs. electron core operator angdA||voOare the antisymmetrized
Perturbation theory within solvation schemes has been combination of regular two-electron repulsion integrals (ERIS).
originally considered by Tapia and Goscindkat the CNDO The presence of solvent operators in the effective Hamiltonian
level. An ab initio version of the MgllerPlesset perturbation is reflected here in thg, and B, 1, integrals which describe
theory was introduced years ago by Olivares éf &bllowing the solute-solvent interactions within the PCM model; in

some intuitive considerations based on the fact that the electronparticular, the former contain the term due to the nuclei-induced
correlation which modifies both the HF solute charge distribu- component of the solvent reaction field while the latter represent
tion and the solvent reaction potential depending on it can be the electron-induced counterpart. In the PCM framework the
back-modified by the solvent. To decouple these combined solvent field is described in terms of “apparent” charges (in the
effects the authors introduced three alternative schemes: (1)following indicated asy) placed at the center of small regions
the noniterative “energy-only” scheme (PTE), where the solvated (called tesserae) covering the surface of the cavity containing
HF orbitals are used to calculate MRorrelation correction;  the molecular solute. In this framework bgth andB,,;, are

(2) the density-only scheme (PTD) where the vacuumnMP expressed in terms of products of these apparent or “induced”
density matrix is used to evaluate reaction field; and (3) the charges with the electrostatic potential due to the solute charge
iterative (PTED) scheme, where the correlated electronic densitydistribution. The detailed expressions defining the apparent
is used to make the reaction field self-consistent. As concernscharges as well as their interaction matrices can be found in ref
the last scheme, some further comments are required. 3 for the basic version of the model and in ref 4 for the last

The PTED scheme leading to a comprehensive description reformulation known as IEF-PCM. In the last term of ed/d
of the effects separately considered by PTD and PTE is ratherwe include both solute nuclear repulsion and schselvent
cumbersome and not suited for the calculation of analytical nuclear interaction.
derivatives, even at the lowest order of the MP perturbation  The elements" of the HF density matrix are defined as
theory. In addition, in an elegant theoretical paper Angyan '
stressed that a rigorous application of the perturbation theory, HE
in which thenth-order correction to the energy is based on the P z i Cvi (5)

(n — 1)th-order density, the correct MP2 solutolvent energy
has to be calculated with the solvent reaction field due to the
Hartree-Fock electron density.

In the following section we present a computational method,
called PCM-MP2, in which no iterative procedures involving
the electronic density corrected to second order, as those (E —eS ) =0 )
exploited in the PTED scheme, are introduced. As a conse- Z uy- TpTUv/EVp
quence, the PCM-MP2 method has a structure which makes
the analytical calculation of energy derivatives relatively easy. where the elemenlﬁw of the Fock matrix, namely
The central focus of the theory is then shifted to the evaluation
of the relaxed MP2 density which is obtained within Hxeector F_=(,+ij,)+G,P"H+X
technique of Handy and SchaeféSuch method is reformulated o e “

in section 3 so as to take into account solvent effects in the contain the solvent effects in the a|ready introduced matnx

resulting coupled perturbed HartreBock expression. As  and in the solvent-equivalent of the in vacuo two-electron matrix
concerns MP2 gradients, further refinements arising from the G: that is, we have

derivatives of the primitive basis functions and from the

derivative of the SCF orthogonality condition have been added PP A vold (8)

still including the solvent contributions. Numerical applications

to one-electron properties and to gradients are given in section

4. We remark that the examples we present are closed-shell ZPHFB . (9)
. . uv,Ao

molecules; but, in principle, the theory we have formulated can

be extended to open-shell energies and gradients.

wherec, are the expansion coefficients of molecular spin
orbitals. They are obtained by solving the corresponding HF
equations:

X, (P @)

v

In eq 6S,, are the elements of the overlap matrix in the AO

2. Basic Formulation of PCM-MP2 Free Energy basis andp the energy of th@th spin—orbital. In the following
the spin-orbitals obtained from eq 6 will be indicated ag,
Atthe MP2 level, the free energy of the solvated system can it gccupiedsa, b, ... if virtual, andp, g, ... when referring to
be expressed as general molecular orbitals.
The MP2 correlated contribution to the free energy thus
GMP2=g"F 4@ 3) become¥:17

whereG HF is the Hartree-Fock (HF) contribution an@ @ is G¢@=1,Y | |abd (10)
the MP2 correction. fa
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where the double excitation amplitudes are given by The elements of the unknown mattiX can be obtained from
the following equations:
£ = [ ||abl(e; + € — €, — &) (11)
- bj
From eqgs 3-11 it follows that solvent effects do not change U= Z(A )ai,bj—€ . 17)
] i~ b

the basic formalism leading to the final MP2 expression but

they act at each step introducing new operators (and the related

matrices) which modify all the involved quantities (MO x 1 x

coefficients, orbital energies, etc.) with respect to the parallel Uia =~ o — [Qa+ ZUgm(EﬂmHagD-{— [fg||amH-

calculation for the isolated system. fra am
2Bgm,fa)] (18)

3. Relaxed Density and Analytical PCM-MP2 Derivatives

Let us now consider the problem of determining the analytical | x _ _ 1 X ; ;
first derivative of the PCM-MP2 free energy (3), namely i 6 — [Qa+ zU (KM [igCH- (kg [imCH-
g MP2x — g HFX 4 @ (2)x (12) 2Bgmki)] (19)
We recall that the basis for much of the following work is U+ (Ugp* +S,,=0 (20)

represented by the key conceptual developments in analytical
derivative theory for conventional, unsolvated calculations given where
in the articles we have collected in ref 19 and in those we shall
explicitly quote below. . (@b |ij CH [&j|[ib0+ 2B, bi

The basic theory of analytical PCM-HF free energy deriva- A = 5ab,ij ’ (21)
tives, G HFx, has been formulated in previous papetsiere it
is worth exploiting the following expression

€a” &

with
G = SR, ik T, S PP @A voTi +
ﬂzv g ' Zhvzw qu Moo+ Jpd — Sheq ;SQ[WHQ'@"' Bpaul
ﬂvﬂﬂ ZS;VW;L: + VNNX (13)

(Cu)* CgPrlBAIVOTI+ BY, ] (22)

uv, la]
Uvio

where we have used a contracted notation indicating the first
derivative of any functiomA as A = 8A/9x and withW " the X ko (RS 4 X
elements of the matriHF = PHFEPHF |n the expressioﬁ above, Moa * Joa Z[(Cﬂp) el )] (23)
it does not compare any derivative of the density ma®k.

By direct differentiation of the correction teré® we arrive =S (c)* (24)
at the following expression, in which we have exploited the Z up
symmetry properties implicitly contained in eq 10:

uv

while the orbital energy derivatives are given by
G @*=1,[y £ij|jabTH y t°0)*||abH

» ” €= Qb+t > Ug((dm[pglH- [pgl[pmi+2B (25)
£ jlab0+ Y g llald - Y, Y £ + € - PP gzm o amor)
ijal ijal ijal
e — e (14) Introducing eqs 1524 into eq 14, we obtain, through simple

algebra, the first derivative of the PCM-MP2 free energy

In eq 14, first derivatives of both spirorbitals and related ~ COrrection as

orbital energies appear. These can be obtained by exploiting

the coupled perturbed HartreEock (CPHF) theory for solvated ~ G®* = zP(Z)QIl + ZP Q% + ZZ LU, + ZIUS} +
systems we have recently develoge®. ]

The derivatives of the molecular orbitals (MO) can be
Zlabscib—i_ ZZIEUS:H + Z W’|P0mr(ﬂ1’f>0) (26)

uvpo

expressed 88

vac occ

a0= J UL S UGk o w'D  (15) whereP{? andP{) are the elements of the occupiedccupied
) T " (0—0), and V|rtuaJrV|rtuaI (v—V) blocks of the relaxed MP2

density matrix, respectively:
X X
i*C= Zuf,|fm+ ;U i KCH- zcmw 0 (16) PR = Y, Zﬁi b @27)

where U}, are the CPHF coefficients arjg*Cthe derivatives P@ = 1/ZZt"‘CtbC (28)
of the AO basis functions. i
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The Lagrangian elements; when computed within the PCM-
MP2 framework become

Ly= ZP(Z)(DhHJaD—F Bya) + ZP (il |cal+ By,y) +
] C
ai

1/22t5°@b| |ajd (29)
Jbc

while ljj, lan, @andly; are defined exactly as in vacuo, with

=1, Zﬁt P[jk| |ab0) (30)

=~ tTbellijC (31)
IJC

(32)

Iy = —l/Z%tﬁjbEkajD
]

The last term of eq 26 collects the AO derivative part where
we definel'(uvpo) as
b
Z ta( pa Ub

I'(uvpo) = C,C
i>],a>b

Ui v

pra (33)

The presence dfl}; in the third term of eq 26 should require

the solution of as many PCM-CPHF equations as the pertur-

bative parameters. However, by exploiting #xeector metho#?
it is possible to reduce the problem to a single PCM-CPHF

equation which is independent on the perturbation. In fact, the

third term of eq 26 can be expressed in the equivalent form

2Z|:aiu)a(1i ZZZLE“Z(A )a| b] _
al al j

where the virtuat-occupied (v-0) block of the relaxed density
matrix is the solution of the following perturbation-independent
linear PCM-CPHF equation:
> =
ZP( ) Eb)Abj,ai -

Lai

= 2Z POQY  (34)

(35)
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The effective second-order densiBMF2 and the energy-
weighted densityWMP?2 are

P/':"VPZ =Py + P/(fv) (38)
W2 =W+ w2 (39)

where the second-order correction to the density and the energy-
weighted density matrices are obtained by back-transforming
the MO equivalents in the AO basis:

Pl = (C.p)*CoPh (40)
pq
vq" "pq (41)

W2 = ;(Cﬂp)*c W2

with

W = 17,5 370K |abl- €P{ — ZPEQ[[[pH jaH By
a pg
(42)
W =", tTljcal- e ,Pg) (43)
IjC
(44)

W) = 1/2%Jk k| [ib(— ¢P%
]

The two-particle density matrix eleme W % introduced in
eq 37 may be separated into two terms that are regarded as

separable and nonseparable, namely

MP2 S NS
r/w/lp r,uv/lp + r,uv/lp (45)
I3, = (P 4+ 2P2YPIE — Y, (PEF 4 2P)PEF (46)
ruvlp =2 z tab uICM Cvacpb (47)

i>],a>b

At the best of our knowledge eq 35 represents the first complete The separable part (46) is similar in form to the expression of

generalization to solvation methods (here applied to PCM
approach) of theZ-vector equation. Olivares et ¥.have
proposed a version of eq 29 in which no solvation terms are
included either inAyj, or in Ly, while in the alternative
formulation of Willets and Ric® the simpler model they use
for the solvent reaction field seems to afféstbut not the
LagrangianL.

Introducing eq 34 into eq 26, we obtain the following
expression folG @x

Zpi(jZ)Qu + Zpaanb + ZZP(Z)Q; + ZI|JS< +
1]
Zlabsgw ZZIa.S; +> mwpomrcuwno) (36)

uvpo
Adding eq 36 to the HF counterpart (13), the final expression
for the first derivative of the PCM-MP2 free energy becomes

Z (|| poli + ZPfVPZh;V — ZS‘ WMP2Z

v uy
UVpo

Vin + ZP(Z)[jW + X, PHF)] + ZPHF i

G @x =

oM = 3 T
uv
1/2Xx (PHF)]

v

(37)
(PHF) = 3P B

uv,o*

whereX*

v

HF two-particle density matrix, while the nonseparable part (47)
is a back-transformation dﬁb from MO to AO basis.

4. One-Electron Properties and Nuclear Gradients

The Hellman-Feynman theorem assures that for solvated
systems described within continuum mddé?23 the one-
electron properties related to exact eigenfunctions can be
determined both as expectation values of the related one-electron
operatoM = Y ;m(i) and as first derivatives of the free energy,

G *, with respect to the parametérdefining the intensity of

the perturbation, namelyM and
oH
= [ |vl

whereH' is the linear component of the molecular Hamiltonian.
The equivalence between the two alternative methods applies
also for HF or MCSCF approximated wave functions which
exploit orbital expansions on basis functions not depending on
1.20When the wave function is approximated with many-body
methods as the coupled-cluster (CC) or the rvVifReories,
Helmann-Feynman theorem is not fulfiled and the two
methods to calculate first-order properties are no longer
equivalent. In the latter cases, also for solvated systems, exactly

WM |1PD= (48)
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as for isolated moleculé the derivative method gives a more Ha _H,
direct way toward higher-order response properties. Ol o O| ?
4.1. One-Electron Properties.If we consider as derivative MH" Mm
d d

parameter the factor defining the intensity of the perturbation
AM and we assume that the basis functions are independent of
the perturbation, the MP2 energy derivative (37) has to be

H. Hc

(1) ()

limited to the MO derivative part. Indeed, the equation reduces Figure 1. Cis and trans conformations of the enol form of malonal-

to the first three terms only since the elementsSoére zero; dehyde.
the resulting expression for the one-electron property connected

to M thus becomes

TABLE 1: MP2 and HF Energies (au) for the Two Isomers
in Vacuo and in Solution, and Solvation Free EnergieAGg

(kcal/mol) for the Solvated Systems

MP2 _ MP2
M - ZP/W m,uv (49) cis trans
w vacuo water vacuo water
whereP""2 are the second-order density matrix elements (see MP2
38) & = 0 energy  —266.41728 —266.42493 —266.39670 —266.41446
eq 38) andm,, = Ampvll MP2corr —0.76972 —0.76662 —0.76721 —0.76256
From the analysis above it should be clear that the relaxed AGq, -4.8 -11.1
MP?2 density is itself a one-electron property defined as the free HF
energy derivative when the perturbation is the delta-function. energy =~ —265.65295 —265.66314 —265.63421 —265.65567
4.2. Nuclear Gradients.PCM-MP2 nuclear gradients can  AGsol —6.4 —135

be directly obtained from eq 37 considering thé Gartesian ) . .

coordinates of solute nuclei as derivative parameters. The deometry and it assumes a very simple expression when such

derivatives of solvent-induced matricg, and X;w can be cavity is built in terms of interlocking spheres centered on the

calculated by exploiting the formalism we have recently nuclei’

formulated leading to the following expressidhs: . .
5. Numerical Applications

Malonaldehyde is an extensively studied molecular system,
from both the experiment® and the computatior#2” point
of view. This large interest is mainly due to the intramolecular
hydrogen bond acting in the cyclic conformation of ttis-
enol form (systeni in Figure 1) which also shows an interesting
six-membered ring arrangement. The geometnl bfas been
well studied experimentally and thus it offers an useful example
to compare with in order to test ab initio calculations.

Here we present a study of this and the related conformer
(transenol 2) of malonaldehyde at both HF and MP2 level.
The calculations of one-electron properties and optimized
geometries were done using a 6+3tG** basis set both in
vacuo and in solution. In the latter case we have used the HF
and MP2 implementations of PCM introduced in the Gaussian99
code?® As additional information about the PCM solvation
model (applying for both HF and MP2 theories), we recall that
the cavity in which the solute is placed is defined in terms of
interlocking spheres centered on the solute nuclei. In the present
case the radiRy are equal to 1.2 times the corresponding van
der Waals value®R'™; that is, we haveRy = 1.44 A Rc =
2.04 A, andR, = 1.80 A. The solvation calculations are

X e performed for a medium having dielectric constant 78.5
Ur(i) corresponding to the static dielectric constant of liquid water at
— | 8 298k

& Previous calculations on the same systems have shown the
limits of the HF method to describe both the geometrical
structure and the molecular properties of the two isorfeFsis

X _ ~Ne eN, _Ne, _eN
Jw = D+ D‘m, + Ty + T

uv

(50)

Dy = — Izv”’xmqw(i) (51)

DEY'=— SV, 0)'() (52)

Ur()

&

eN Ne _
Ty + Ty =

4
-5 4,000 (53)
€ — 1 |

and

1/2x;v =Dy + 15, (54)

Dee —

w

= Vaua) (55)

2me
ee Ne _ S\l
r,uv + T,Lw - c— 1|quv(l)q (I)

Here VNX(i) and V:V(i) are the derivatives of the electrostatic
potentials (computed on tlith tessera) due to the nuclear charge  finging assumes an even more interesting aspect in the present
distributionyy and to the elementary charge distributigy,. context where the attention is mainly focused on the solvent
In egs 51-56 explicit reference is made to the apparent charges effects. Indeed, the solvent can largely modify both the geometry
introduced in the PCM approach to describe solvent reaction and the response properties of the solute, combining its action
field; in particular,gN(i), q..(i), andg®(i) represent the apparent  with that due to correlation. In this way, the solvation introduces
charges induced on the surface cavity (one for each tesséra 3 |arger complexity with respect to calculations on isolated
areaa;) by y, x,x» and the total electronic charge distribution  systems in the analysis of the changes induced by the correlated
of the solute, respectively. MP2 calculations on the energies, the one-electron properties,
The term appearing between parentheses in eqs 53 and 5@&nd more in general the charge density distribution of the solute.
takes into account the movement of the cavity with respectto In Table 1 we report the HF and MP2 energies (with
the motion of the nucleus; it only depends on the cavity indication of the MP2 corrections) of the two systems both in
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TABLE 2: MP2 and HF Dipoles (D) and Mulliken Net Charges (au) for the Two Isomers Both in Vacuo and in Solutio

MP2 HF
cis trans cis trans

vacuo water vacuo water vacuo water vacuo water
u 2.820 3.798 4.640 6.249 2.964 3.901 4.991 6.657
Ce 0.1714 0.1952 0.1804 0.2073 0.3602 0.3857 0.3420 0.3787
O, —0.4780 —0.5502 —0.3807 —0.5002 —0.5884 —0.6676 —0.4831 —0.6141
C —0.1419 —0.1707 —0.2087 —0.2856 —0.3070 —0.3469 —0.3514 —0.4478
Ch 0.1071 0.1167 0.1694 0.2250 0.2544 0.2644 0.3091 0.3722
On —0.4646 —0.5074 —0.4427 —0.5059 —0.5557 —0.5889 —0.5157 —0.5772
Ha 0.4225 0.4347 0.3805 0.4316 0.4540 0.4642 0.3994 0.4495

2 The subscript ¢ on C and O indicates the carbonyl group, while h refers-@HCgroup. The hydrogen (irefers to the hydroxyl.

vacuo and in water. In the latter case also the solvation free 4 4o
energies AGsq = Gyac — Gag) are presented. %

Two are the main aspects to be observed. First, we note that
the stabilizing effect of the intramolecular H-bond acting in the 12
cis isomer is amplified by correlation; the isomerization energy
from the cis to the trans form of the isolated system goes from 10.001
—11.8 kcal/mol at HF level to-12.9 kcal/mol at MP2 level.

This effect, already known from previous calculatidhss due 8.00-
to both the decrease of charge density within the bonding regions
between nuclei and on the nuclei themselves, and the parallel
increase in the diffuse regions around atoms. In particular, the
concentration of charge found at the MP2 level in the intermedi-

ate region between the two oxygens is more pronounced for ~ 4.00
as the hydroxyl hydrogen resides within such region.

The second and new aspect introduced by data of Table 1 is 2.00-
the solvent effect. The main result is the change in the relative
stability of the two isomers: even if solvent does not invert the
picture found in vacuo, the isomerization energy is reduced to
—4.7 kcal/mol at HF level and-6.6 kcal/mol at MP2 level.
Such preferential stabilization of the solvent for the trans form -2:9"
(see also the values of solvation energhdS,) is contrasted
by the opposite action due to correlation, which more efficiently -4.00-
stabilizes the cis form. The resulting effect is the smaller solvent-
induced stabilization of the trans form going from HF to MP2
calculations AGgotrans) — AGso((Cis) is —7.1 and—6.3 kcal/
mol, respectively). , ‘

Passing now to one-electron properties, in Table 2 we report -10.00 -8.00 -6.00 -4.00 -200 0.00 2.00 4.0
HF and MP2 dipoles and Mulliken net charges for the two Figure 2. MP2 molecular electrost.atic potential (kcal/mol) computed
isomers both in vacuo and in water. for the cis-enol in water. The plot is for the molecular plane (au are

The limits of the HE theory in predicting reliable dipole used for both axes) and the contour lines increase by 6 kcal/mol.
moments are largely known, it suffices to recall the CO example TABLE 3: Minimum Values of the MEP (kcal/mol) at MP2
in which not only the magnitude but also the direction of the and HF Levels for the Cis and Trans Isomers Both in Vacuo
dipole cannot be reproduced in the HF limit. For the two isomers @nd In Solution
of malonaldehyde the situation is not so unlucky but some MP2 HF
effects are still evident passing from HF to MP2 calculations. cis
In particular, all the dipole values are significantly reduced by
correlation (of 5.1% for the cis form and of 7.6% for the trans
of the molecule in vacuo). In the presence of the solvent the
analysis is more articulate as solvation induces an opposite effectfunction is generally rather intricate, and its analysis is often
leading to increase dipole values; the decrease of the MP2 dipoledone with the help of graphical display of maps on selected
values is thus reduced to 2.7% and 6.5 %, in the cis and in theplanes. We shall limit ourselves to present the map of the
trans isomer, respectively. Also, the net atomic charges show amolecular electrostatic energy (obtained by multiplying the MEP
similar trend; the inclusion of correlation leads to a global by a unit charge) for the molecular plane of the two isomers
reduction of their absolute values both for the isolated and the obtained at MP2 level with inclusion of the solvent (see Figures
solvated system, but in the latter case such reduction is smaller2 and 3). They are not qualitatively different from those of the
because of the opposite action due to solvation. isolated systems on the one hand, and from those obtained with
A different, but still related, analysis can be done on two HF calculations on the other hand.
electrostatic properties: the molecular electrostatic potential The main aspect which distinguishes HF and MP2 calcula-
(MEP) and the electric field gradient (EFG). tions, as well as solvated and isolated systems, is the relative
The MEP is a very common and effective tool to visualize magnitude of the property while the general shape of the map
the effects of charge density and of its modifications due to remains almost unchanged introducing correlation and/or solvent
different levels of calculation. The 3D shape of the MEP effects. The numerical data are shown in Table 3 where we

»

.00+

0.004

-6.00+

trans cis trans

vacuum —43.9 —62.0 —53.9 —70.3
water —54.0 —79.0 —65.6 —89.9
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TABLE 4: O (MHz) and °H (KHz) v and 5 Values at HF and MP2 Levels Both in Vacuo and in SolutioA

MP2 HF
cis trans cis trans
vacuo water vacuo water vacuo water vacuo water
(O) —9.68 —-9.44 —-11.26 —-10.81 —-11.20 —-10.81 —12.59 —-11.81
7(Oc) 0.17 0.10 0.38 0.26 0.24 0.12 0.45 0.25
v(On) 7.20 7.16 8.72 8.28 9.35 9.23 10.45 9.90
7(On) 0.34 0.38 0.66 0.58 0.47 0.49 0.61 0.55
v(Ha) —212.98 —212.72 —313.89 —297.06 —292.34 —292.66 —359.21 —337.63
n(Ha) 0.18 0.19 0.13 0.20 0.14 0.14 0.13 0.13

2 The subscript ¢ on O indicates the carbonyl group, while h refers to the hydroxyl oxygen.

TABLE 5: Selected MP2- and HF-Optimized Geometry Parameters for the Two Isomers Both in Vacuo and in Solutich

MP2 HF
cis trans cis trans

vacuo water vacuo water vacuo water vacuo water
r(C-C) 1.440 1.438 1.465 1.453 1.453 1.448 1.472 1.458
r(C=C) 1.366 1.365 1.352 1.356 1.345 1.346 1.332 1.340
r(C=0) 1.253 1.257 1.234 1.242 1.208 1.216 1.193 1.207
r(C-0) 1.332 1.338 1.354 1.350 1.312 1.316 1.327 1.323
r(O—Hy) 0.995 0.995 0.966 0.970 0.956 0.956 0.942 0.947
r(C—Hp) 1.083 1.082 1.085 1.084 1.075 1.074 1.078 1.076
r(C—H,) 1.079 1.074 1.081 1.081 1.073 1.073 1.075 1.074
r(C—Ha) 1.098 1.095 1.104 1.100 1.091 1.088 1.096 1.092
r(0---0) 2.600 2.599 2.846 2.871 2.690 2.700 2.890 2.904
gc=Cc—C 119.9 120.4 125.9 126.5 121.2 121.8 126.4 126.8
Ogc—Cc=0 123.3 123.1 125.7 124.0 124.0 123.9 126.4 126.7
OJc=Cc—0 124.3 123.9 123.4 123.6 126.2 125.9 124.9 124.8
OC—0O—Ha 106.0 106.1 109.3 109.0 110.1 110.3 111.7 111.2

aBond lengths are in A. The indices defining the nuclei are reported in Figure 1.

effects are not significant; the minima are only slightly displaced
but they always remain well inside the molecular cavity
containing the solute.

As regards electric field gradients (EFG’s), the interest is
mainly due to their proportionality to the nuclear quadrupole
coupling constants (NQCC's) used to estimate the relative
widths of nuclei NMR signals.

The principal axis (PA) components (in atomic unig,) dyy,
and gy of the traceless EFG tensor correlate with the experi-
mental quantities, the NQCG;, (measured in Hz) and the
asymmetry parameten, through the relationships

14.00

v = (ed(eQh) = €qQh
7= (O~ qyy)/qzz

where eq is the largest EFG component, i.eeq, as by
definition the PA components are assigned such [hat >

Icyyl > |0k To calculates?qQ/h from the computed,, value,

a literature value fo, the nuclear quadrupole, is required: in
the present work, where we shall limit the analysis to the two
oxygens and the hydroxyl hydrogen, valuesQpf = 2.860 x

10738 barr?® and Qo = —0.0265 bar® have been assumed,
although other values have been also used. The resultant
| conversion factors front,; to €qQ/h values are as follows:

‘ = X for hydrogen (here considered in &6l isotopic form), 672.0

Figure.;O.(:\ijz.grlr:ZIec-zll(;or eI:(;(t)r()ost;aztitc):Opoti.:l?ial (iﬁ;)ll/m:)i;)(::omputed kHz/au and for oxygen (aS0 isotope),~6.227 MHz/au.
for thetrans-enol in water. The plot is for the molecular plane (au are In Table 4 we report ‘f"”d” values fpr the t‘.’VO isomers at
MP2 and HF level both in vacuo and in solution.

used for both axes) and the contour lines increase by 6 kcal/mol.

Data of Table 4 are to be interpreted here as a further index
report the minimum values for the two molecular systems both of the combined correlationsolvent effects more than as a
in vacuo and in water at MP2 and HF level of calculation. Itis specific molecular property. More detailed comments should
worth noting that the position of the minima are almost in fact require analyses of different type, namely based on the
equivalent for both HF and MP2 calculations. Also, solvation influence of the H-bond and of the relative position of the
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hydrogen with respect to oxygens, which go beyond the scoperandom phase approximations and, more in general, the
of the paper. What we want to stress is on the one hand thegeneralization of the whole methodology to coupled cluster
significant decrease of both cis and trans absolute NQCC andtechniques are now in progress.
n of all the nuclei passing from HF to MP2 calculations, and
on the other hand the solvent effects. While the correlation effect Acknowledgment. This work is part of a collaborative
could be expected on the bases of the previous comments orproject with Consiglio Nazionale delle Ricerche (C.N.R.); the
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